Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.

Identifieur interne : 001412 ( Main/Exploration ); précédent : 001411; suivant : 001413

Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.

Auteurs : Francisco Ramírez-Valle [États-Unis] ; Michelle L. Badura ; Steve Braunstein ; Manisha Narasimhan ; Robert J. Schneider

Source :

RBID : pubmed:20439490

Descripteurs français

English descriptors

Abstract

The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.

DOI: 10.1128/MCB.00322-09
PubMed: 20439490
PubMed Central: PMC2897579


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.</title>
<author>
<name sortKey="Ramirez Valle, Francisco" sort="Ramirez Valle, Francisco" uniqKey="Ramirez Valle F" first="Francisco" last="Ramírez-Valle">Francisco Ramírez-Valle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Badura, Michelle L" sort="Badura, Michelle L" uniqKey="Badura M" first="Michelle L" last="Badura">Michelle L. Badura</name>
</author>
<author>
<name sortKey="Braunstein, Steve" sort="Braunstein, Steve" uniqKey="Braunstein S" first="Steve" last="Braunstein">Steve Braunstein</name>
</author>
<author>
<name sortKey="Narasimhan, Manisha" sort="Narasimhan, Manisha" uniqKey="Narasimhan M" first="Manisha" last="Narasimhan">Manisha Narasimhan</name>
</author>
<author>
<name sortKey="Schneider, Robert J" sort="Schneider, Robert J" uniqKey="Schneider R" first="Robert J" last="Schneider">Robert J. Schneider</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20439490</idno>
<idno type="pmid">20439490</idno>
<idno type="doi">10.1128/MCB.00322-09</idno>
<idno type="pmc">PMC2897579</idno>
<idno type="wicri:Area/Main/Corpus">001412</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001412</idno>
<idno type="wicri:Area/Main/Curation">001412</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001412</idno>
<idno type="wicri:Area/Main/Exploration">001412</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.</title>
<author>
<name sortKey="Ramirez Valle, Francisco" sort="Ramirez Valle, Francisco" uniqKey="Ramirez Valle F" first="Francisco" last="Ramírez-Valle">Francisco Ramírez-Valle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Badura, Michelle L" sort="Badura, Michelle L" uniqKey="Badura M" first="Michelle L" last="Badura">Michelle L. Badura</name>
</author>
<author>
<name sortKey="Braunstein, Steve" sort="Braunstein, Steve" uniqKey="Braunstein S" first="Steve" last="Braunstein">Steve Braunstein</name>
</author>
<author>
<name sortKey="Narasimhan, Manisha" sort="Narasimhan, Manisha" uniqKey="Narasimhan M" first="Manisha" last="Narasimhan">Manisha Narasimhan</name>
</author>
<author>
<name sortKey="Schneider, Robert J" sort="Schneider, Robert J" uniqKey="Schneider R" first="Robert J" last="Schneider">Robert J. Schneider</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>CDC2 Protein Kinase (genetics)</term>
<term>CDC2 Protein Kinase (metabolism)</term>
<term>Cell Line (MeSH)</term>
<term>G2 Phase (physiology)</term>
<term>Glycogen Synthase Kinase 3 (genetics)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mitosis (physiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (genetics)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Regulatory-Associated Protein of mTOR (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glycogen Synthase Kinase 3 (génétique)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Mitose (physiologie)</term>
<term>Phase G2 (physiologie)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéine de régulation associée à mTOR (MeSH)</term>
<term>Protéine-kinase CDC2 (génétique)</term>
<term>Protéine-kinase CDC2 (métabolisme)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (MeSH)</term>
<term>Protéines proto-oncogènes c-akt (génétique)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>CDC2 Protein Kinase</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Proteins</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CDC2 Protein Kinase</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Proteins</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Multiprotein Complexes</term>
<term>Regulatory-Associated Protein of mTOR</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéine-kinase CDC2</term>
<term>Protéines</term>
<term>Protéines proto-oncogènes c-akt</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéine-kinase CDC2</term>
<term>Protéines</term>
<term>Protéines proto-oncogènes c-akt</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mitose</term>
<term>Phase G2</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>G2 Phase</term>
<term>Mitosis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Phosphorylation</term>
<term>Protein Biosynthesis</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Phosphorylation</term>
<term>Protéine de régulation associée à mTOR</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Séquence d'acides aminés</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20439490</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.</ArticleTitle>
<Pagination>
<MedlinePgn>3151-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00322-09</ELocationID>
<Abstract>
<AbstractText>The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ramírez-Valle</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Badura</LastName>
<ForeName>Michelle L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Braunstein</LastName>
<ForeName>Steve</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Narasimhan</LastName>
<ForeName>Manisha</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C463659">RPTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076223">Regulatory-Associated Protein of mTOR</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.22</RegistryNumber>
<NameOfSubstance UI="D016203">CDC2 Protein Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016203" MajorTopicYN="N">CDC2 Protein Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016195" MajorTopicYN="N">G2 Phase</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008938" MajorTopicYN="N">Mitosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="Y">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076223" MajorTopicYN="N">Regulatory-Associated Protein of mTOR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20439490</ArticleId>
<ArticleId IdType="pii">MCB.00322-09</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00322-09</ArticleId>
<ArticleId IdType="pmc">PMC2897579</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2006 Oct 20;314(5798):467-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 Feb;12(2):247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17276342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Mar;18(3):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Mar 15;446(7133):329-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17361185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 20;316(5823):417-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1964 Feb;33:571-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14161565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Dec 3;16(5):831-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 18;280(7):5336-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15569665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Nov 1;5(21):2543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17106257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 6;282(27):20036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 13;282(28):20329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Oct;27(19):6639-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17664278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2008 Jan;307(1-2):59-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17786541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Apr 21;181(2):293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Sep 9;18(17):1269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18722121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Oct 15;21(20):5396-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 21;278(12):10189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):16433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 May 13;13(10):797-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12747827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 5;278(49):48570-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 2;279(14):13721-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Apr 19;23(18):3151-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15094765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Aug;287(2):C281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Jul 22;23(33):5654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1997-2009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Jun 28;50(3):655-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5529301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1980 Apr;126(2):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6153987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Aug 15;262(23):11134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3038908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jun;87(11):4231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2349232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 1990 Oct;20(10):2277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1700753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Apr 19;65(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1849798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Sep;176(18):5802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18955708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Feb 10;7(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19209957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 29;284(22):14693-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 1;285(1):80-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Feb 1;60(3):566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10676638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Apr;5(4):607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Jul 1;60(13):3504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10910062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Feb;11(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2001 Jun;11(3):279-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11377964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 15;20(16):4370-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Aug 15;15(16):2083-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Sep 4;11(17):1374-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Oct 18;413(6857):744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Nov 1;15(21):2852-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 16;12(8):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jun 15;16(12):1472-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Mar;19(6):1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8730858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Nov 16;17(22):6649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9822608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Feb 19;96(4):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10052455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atompraxis. 1962 Oct;8:386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13969828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Feb 23;439(7079):1009-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2006 Mar;32(3):227-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(10):3955-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Sep;6(9):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Oct 6;127(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Oct 20;24(2):185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052453</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Badura, Michelle L" sort="Badura, Michelle L" uniqKey="Badura M" first="Michelle L" last="Badura">Michelle L. Badura</name>
<name sortKey="Braunstein, Steve" sort="Braunstein, Steve" uniqKey="Braunstein S" first="Steve" last="Braunstein">Steve Braunstein</name>
<name sortKey="Narasimhan, Manisha" sort="Narasimhan, Manisha" uniqKey="Narasimhan M" first="Manisha" last="Narasimhan">Manisha Narasimhan</name>
<name sortKey="Schneider, Robert J" sort="Schneider, Robert J" uniqKey="Schneider R" first="Robert J" last="Schneider">Robert J. Schneider</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Ramirez Valle, Francisco" sort="Ramirez Valle, Francisco" uniqKey="Ramirez Valle F" first="Francisco" last="Ramírez-Valle">Francisco Ramírez-Valle</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001412 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001412 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20439490
   |texte=   Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20439490" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020